在Hexo博客中使用PlantUML来画UML

  |  

使用PlantUML来画UML

图像:

1
2
3
4
5
6
start
:配置Java环境;
:下载pantuml.jar;
:编写描述文件;
:执行;
stop

源码:

1
2
3
4
5
6
start
:配置Java环境;
:下载pantuml.jar;
:编写描述文件;
:执行;
stop

图像:

1
2
3
4
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

源码:

1
2
3
4
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

图像:

1
2
3
4
5
6
7
8
9
10
11
12
participant par
actor act
boundary bou
control con
entity ent
database dat

par->act : to actor
par->bou : to boundary
par->con : to control
par->ent : to entity
par->dat : to database

源码:

1
2
3
4
5
6
7
8
9
10
11
12
participant par
actor act
boundary bou
control con
entity ent
database dat

par->act : to actor
par->bou : to boundary
par->con : to control
par->ent : to entity
par->dat : to database

图像:

1
2
3
4
5
6
7
8
9
10
11
12
participant "我是很长的一段话,如果要用我来表达的话,就太长了吧!" as par
actor act #FF0000
boundary bou #00FF00
control con #0000FF
entity ent #FFFF00
database dat #00FFFF

par->act : to actor
par->bou : to boundary
par->con : to control
par->ent : to entity
par->dat : to database

源码:

1
2
3
4
5
6
7
8
9
10
11
12
participant "我是很长的一段话,如果要用我来表达的话,就太长了吧!" as par
actor act #FF0000
boundary bou #00FF00
control con #0000FF
entity ent #FFFF00
database dat #00FFFF

par->act : to actor
par->bou : to boundary
par->con : to control
par->ent : to entity
par->dat : to database

图像:

1
2
3
4
5
6
7
8
9
10
11
12
package org.nju.dislab.uml{
class TestA {
-String name
+int id
}

class TestB extends TestA{
-String desc
+String getDesc()
+void setDesc(String desc)
}
}

源码:

1
2
3
4
5
6
7
8
9
10
11
12
package org.nju.dislab.uml{
class TestA {
-String name
+int id
}

class TestB extends TestA{
-String desc
+String getDesc()
+void setDesc(String desc)
}
}

图像:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
xearth
61.17 -150.00 "Anchorage" # Alaska, USA
38.00 23.73 "Athens" # Greece
33.4 44.4 "Baghdad" # Iraq
13.73 100.50 "Bangkok" # Thailand
39.92 116.43 "Beijing" # China
52.53 13.42 "Berlin" # Germany
32.3 -64.7 "Bermuda" # Bermuda
42.33 -71.08 "Boston" # Massachusetts, USA
-15.8 -47.9 "Brasilia" # Brazil
-4.2 15.3 "Brazzaville" # Congo
-34.67 -58.50 "Buenos Aires" # Argentina
31.05 31.25 "Cairo" # Egypt
22.5 88.3 "Calcutta" # India
-33.93 18.47 "Cape Town" # South Africa
33.6 -7.6 "Casablanca" # Morocco (Rabat?)
41.83 -87.75 "Chicago" # Illinois, USA
32.78 -96.80 "Dallas" # Texas, USA
28.63 77.20 "New Delhi" # India
39.75 -105.00 "Denver" # Colorado, USA
24.23 55.28 "Dubai" # UAE (Abu Dhabi?)
-27.1 -109.4 "Easter Island" # Easter Island
-18.0 178.1 "Fiji" # Fiji
13.5 144.8 "Guam" # Guam
60.13 25.00 "Helsinki" # Finland
22.2 114.1 "Hong Kong" # Hong Kong
21.32 -157.83 "Honolulu" # Hawaii, USA
52.2 104.3 "Irkutsk" # Irkutsk, Russia
41.0 29.0 "Istanbul" # Turkey (Ankara?)
-6.13 106.75 "Jakarta" # Indonesia
31.8 35.2 "Jerusalem" # Israel
34.5 69.2 "Kabul" # Afghanistan
27.7 85.3 "Kathmandu" # Nepal
50.4 30.5 "Kiev" # Ukraine
3.13 101.70 "Kuala Lumpur" # Malaysia
6.45 3.47 "Lagos" # Nigeria
-12.10 -77.05 "Lima" # Peru
51.50 -0.17 "London" # United Kingdom
40.42 -3.72 "Madrid" # Spain
14.6 121.0 "Manila" # The Phillipines
21.5 39.8 "Mecca" # Saudi Arabia
19.4 -99.1 "Mexico City" # Mexico
25.8 -80.2 "Miami" # Florida, USA
6.2 -10.8 "Monrovia" # Liberia
45.5 -73.5 "Montreal" # Quebec, Canada
55.75 37.70 "Moscow" # Russia
-1.28 36.83 "Nairobi" # Kenya
59.93 10.75 "Oslo" # Norway
48.87 2.33 "Paris" # France
-32.0 115.9 "Perth" # Australia
45.5 -122.5 "Portland" # Oregon, USA
-0.2 -78.5 "Quito" # Ecuador
64.15 -21.97 "Reykjavik" # Iceland
-22.88 -43.28 "Rio de Janeiro" # Brazil
41.88 12.50 "Rome" # Italy
11.0 106.7 "Ho Chi Minh City" # Vietnam (Hanoi?)
37.75 -122.45 "San Francisco" # California, USA
9.98 -84.07 "San Jose" # Costa Rica
18.5 -66.1 "San Juan" # Puerto Rico
-33.5 -70.7 "Santiago" # Chile
1.2 103.9 "Singapore" # Singapore
42.67 23.30 "Sofia" # Bulgaria
59.33 18.08 "Stockholm" # Sweden
-33.92 151.17 "Sydney" # Australia
-17.6 -149.5 "Tahiti" # Tahiti
16.8 -3.0 "Timbuktu" # Mali (Bamako?)
35.67 139.75 "Tokyo" # Japan
43.70 -79.42 "Toronto" # Ontario, Canada
32.9 13.2 "Tripoli" # Libya
47.9 106.9 "Ulan Bator" # Mongolia
49.22 -123.10 "Vancouver" # B.C., Canada
48.22 16.37 "Vienna" # Austria
38.9 -77.0 "Washington" # United States
-41.28 174.78 "Wellington" # New Zealand
62.5 -114.3 "Yellowknife" # N.T., Canada
90.00 0.00 "North Pole" # North Pole
-90.00 0.00 "South Pole" # South Pole

源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
xearth
61.17 -150.00 "Anchorage" # Alaska, USA
38.00 23.73 "Athens" # Greece
33.4 44.4 "Baghdad" # Iraq
13.73 100.50 "Bangkok" # Thailand
39.92 116.43 "Beijing" # China
52.53 13.42 "Berlin" # Germany
32.3 -64.7 "Bermuda" # Bermuda
42.33 -71.08 "Boston" # Massachusetts, USA
-15.8 -47.9 "Brasilia" # Brazil
-4.2 15.3 "Brazzaville" # Congo
-34.67 -58.50 "Buenos Aires" # Argentina
31.05 31.25 "Cairo" # Egypt
22.5 88.3 "Calcutta" # India
-33.93 18.47 "Cape Town" # South Africa
33.6 -7.6 "Casablanca" # Morocco (Rabat?)
41.83 -87.75 "Chicago" # Illinois, USA
32.78 -96.80 "Dallas" # Texas, USA
28.63 77.20 "New Delhi" # India
39.75 -105.00 "Denver" # Colorado, USA
24.23 55.28 "Dubai" # UAE (Abu Dhabi?)
-27.1 -109.4 "Easter Island" # Easter Island
-18.0 178.1 "Fiji" # Fiji
13.5 144.8 "Guam" # Guam
60.13 25.00 "Helsinki" # Finland
22.2 114.1 "Hong Kong" # Hong Kong
21.32 -157.83 "Honolulu" # Hawaii, USA
52.2 104.3 "Irkutsk" # Irkutsk, Russia
41.0 29.0 "Istanbul" # Turkey (Ankara?)
-6.13 106.75 "Jakarta" # Indonesia
31.8 35.2 "Jerusalem" # Israel
34.5 69.2 "Kabul" # Afghanistan
27.7 85.3 "Kathmandu" # Nepal
50.4 30.5 "Kiev" # Ukraine
3.13 101.70 "Kuala Lumpur" # Malaysia
6.45 3.47 "Lagos" # Nigeria
-12.10 -77.05 "Lima" # Peru
51.50 -0.17 "London" # United Kingdom
40.42 -3.72 "Madrid" # Spain
14.6 121.0 "Manila" # The Phillipines
21.5 39.8 "Mecca" # Saudi Arabia
19.4 -99.1 "Mexico City" # Mexico
25.8 -80.2 "Miami" # Florida, USA
6.2 -10.8 "Monrovia" # Liberia
45.5 -73.5 "Montreal" # Quebec, Canada
55.75 37.70 "Moscow" # Russia
-1.28 36.83 "Nairobi" # Kenya
59.93 10.75 "Oslo" # Norway
48.87 2.33 "Paris" # France
-32.0 115.9 "Perth" # Australia
45.5 -122.5 "Portland" # Oregon, USA
-0.2 -78.5 "Quito" # Ecuador
64.15 -21.97 "Reykjavik" # Iceland
-22.88 -43.28 "Rio de Janeiro" # Brazil
41.88 12.50 "Rome" # Italy
11.0 106.7 "Ho Chi Minh City" # Vietnam (Hanoi?)
37.75 -122.45 "San Francisco" # California, USA
9.98 -84.07 "San Jose" # Costa Rica
18.5 -66.1 "San Juan" # Puerto Rico
-33.5 -70.7 "Santiago" # Chile
1.2 103.9 "Singapore" # Singapore
42.67 23.30 "Sofia" # Bulgaria
59.33 18.08 "Stockholm" # Sweden
-33.92 151.17 "Sydney" # Australia
-17.6 -149.5 "Tahiti" # Tahiti
16.8 -3.0 "Timbuktu" # Mali (Bamako?)
35.67 139.75 "Tokyo" # Japan
43.70 -79.42 "Toronto" # Ontario, Canada
32.9 13.2 "Tripoli" # Libya
47.9 106.9 "Ulan Bator" # Mongolia
49.22 -123.10 "Vancouver" # B.C., Canada
48.22 16.37 "Vienna" # Austria
38.9 -77.0 "Washington" # United States
-41.28 174.78 "Wellington" # New Zealand
62.5 -114.3 "Yellowknife" # N.T., Canada
90.00 0.00 "North Pole" # North Pole
-90.00 0.00 "South Pole" # South Pole

参考

在hexo中使用PlantUML来画UML

文章目录
  1. 使用PlantUML来画UML
  2. 参考